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We investigate the quantum phase diagram of the exactly solved mixed spin-
( 12 , 1) ladder via the thermodynamic Bethe ansatz (TBA). In the absence of a
magnetic field the model exhibits three quantum phases associated with su(2),
su(4), and su(6) symmetries. In the presence of a strong magnetic field, there is a
third and full saturation magnetization plateaux within the strong antiferro-
magnetic rung coupling regime. Gapless and gapped phases appear in turn as
the magnetic field increases. For weak rung coupling, the fractional magnetiza-
tion plateau vanishs and the model undergoes new quantum phase transitions.
However, in the ferromagnetic coupling regime, the system does not have a
third saturation magnetization plateau. The critical behaviour in the vicinity of
the critical points is also derived systematically using the TBA.

KEY WORDS: Mixed spin ladder; exactly solved model; magnetization
plateaux; phase diagram.

1. INTRODUCTION

The field of exactly solved models in statistical mechanics has many signi-
ficant highlights. These include Elliott Lieb’s pioneering work on the six-
vertex model and his calculation of the residual entropy of square ice. (1)

Over the ensuing years the six-vertex model and the related Heisenberg spin
chain have been generalised in all manner of directions. Most recently
attention has turned to the physics of quantum spin ladders, for which



a number of exactly solved models have been proposed. The underlying
model is the spin- 12 Heisenberg ladder, which has been studied extensi-
vely. (2) This model consists of two Heisenberg chains coupled together with
Heisenberg rung interactions forming a ladder-like structure. A number
of ladder compounds have been synthesized, such as SrCu2O3, (3)

Cu2(C5H12N2)2Cl4, (4) (C5H12N)2CuBr4, (5) (5IAP)2CuBr4 · 2H2O, (6) KCuCl3
and TlCuCl3. (7) The experimental results reveal an interesting mix of low-
temperature physics, including spin excitation gaps and magnetization
plateaux.

The theoretical investigation of the ladder compounds has also been
centred on a number of variants of the standard Heisenberg ladder, (8)

including the addition of multi-body interactions, (9) alternation and frus-
tration. (10, 11) The ladder models have been studied by a variety of methods,
for example, numerical, (8, 12) perturbation theory, (13, 14) and the quantum
transfer matrix algorithm. (15) Unfortunately the Heisenberg ladder is not
exactly solvable in the sense of the six-vertex model or related su(2)
Heisenberg chain. However, a number of variants have been solved exactly
by means of the Bethe ansatz; see, for example, refs. 16–21. For arguably
the simplest model, based on su(4), the critical behaviour derived from
the thermodynamic Bethe ansatz (TBA) is seen to be consistent with the
existing experimental, numerical and perturbative results for the strong
coupling ladder compounds. (22) This includes the spin excitation gap and
the critical fields Hc1 and Hc2, which are in excellent agreement with the
experimental values for the known strong coupling ladder compounds
(5IAP)2CuBr4 · 2H2O, Cu2(C5H12N2)2Cl4 and (C5H12N)2CuBr4.

On the other hand, the special interest in fractional magnetization pla-
teaux (23) has inspired work on mixed spin chains, (24–27) mixed spin ladders, (28)

and various experimental compounds. (29–31) In particular, the magnetic
behaviour of a mixed spin-( 12 , 1) Heisenberg ladder has been investigated
by means of the density-matrix renormalization group technique. (28) It was
concluded that for certain strong rung coupling magnetization plateaux
exist at Mz=0.5 and at Mz=1, but with no plateaux for negative (ferro-
magnetic) rung coupling. In fact the mixed spin ladder exhibits a richer
phase diagram than the spin- 12 ladder. It appears that a comprehensive
study of the mixed spin ladder, e.g., the prediction of the critical fields for
different rung coupling and examination of the critical behavior, has not
been undertaken. It also remains to investigate the effect of non-equal
Landé g-factors on the ladder legs, particularly given that g-factor aniso-
tropy appears to affect the critical fields in the spin-orbital model. (32, 33)

In this paper, we investigate the quantum phase diagram of the exactly
solved mixed spin-( 12 , 1) ladder, (19) with different g-factors, via the TBA.
We find that in the absence of a magnetic field the model exhibits three
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quantum phases associated with su(2), su(4), and su(6) symmetries. In the
presence of a strong magnetic field h, two magnetization plateaux appear in
the strong antiferromagnetic rung coupling regime. The fractional magne-
tization plateau Mz=1

2 gsmB+
1
6 (gs −gt) mB corresponding to the fully-

polarized doublet rung state, opens at the critical field Hc1 and vanishes at
the critical field Hc2. The second plateau Mz=( 12 gt+gs) mB, corresponding
to a fully-polarized quadruplet rung state, opens only at a very strong
magnetic field Hc3. For weak antiferromagnetic rung coupling, the fractio-
nal plateau is closed such that three different kinds of quantum phase
transition occur. For ferromagnetic rung coupling only the full saturation
magnetization plateau exists. The critical behavior for the different
quantum phase transitions is systematically derived by using the TBA.

The paper is organized as follows. In Section 2, we discuss the exactly
solved mixed spin-( 12 , 1) ladder model with different Landé factors. The
exact solution is given via an appropriate choice of rung basis. Section 3 is
devoted to the investigation of the quantum phase diagram. In Section 4
we investigate the magnetization plateaux in the presence of a strong mag-
netic field. The critical fields characterizing the different quantum phase
transitions are given explicitly. A summary of our main results and
conclusions are given in Section 5.

2. THE EXACTLY SOLVED MIXED SPIN-(12 , 1) LADDER MODEL

The Hamiltonian of the exactly solved spin-( 12 , 1) ladder model, based
on the su(6) symmetry, reads (19)

H=J||Hleg+J+ C
L

j=1
TFj · SFj −gtmBh C

L

j=1
Tz
j −gsmBh C

L

j=1
Sz
j , (1)

Hleg=C
L

j=1
( 12+2 TFj ·TFj+1) (−1+SFj · SFj+1+(SFj · SFj+1)2). (2)

Here TF j and SFj are the standard spin- 12 and spin-1 operators acting on site j
of the upper and lower legs, respectively (see Fig. 1), J|| and J+ are the
intrachain and interchain coupling constants, h is the magnetic field, mB is
the Bohr magneton and gt and gs are the Landé factors along each leg.
Periodic boundary conditions are imposed with L the number of rungs.

The rung term in (1) breaks the su(6) symmetry of Hleg into
su(4) À u(2) symmetry. This symmetry is in turn broken under the magne-
tic field. The physical properties and the critical behaviour of the model are
determined by the competition between the rung and leg coupling constants
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Fig. 1. The mixed spin ladder: J|| and J+ are the intrachain and interchain couplings; gt and
gs are the Landé factors along each leg.

and the magnetic field h. Essentially, Hleg is the permutation operator cor-
responding to the su(6) algebra symmetry. If we change the canonical
basis eabi é ecdj of V1 é V2 into rung quadruplet and doublet states (Clebsch–
Gordan decomposition), the six-dimensional space splits into the direct
sum of quadruplets and doublets with the basis

|1P=`2

`3
(|1, −1

2P− 1
`2

|0, 12P), |2P=`2

`3
(|−1, 12P− 1

`2
|0, −1

2P),

|3P=|1, 12P, |4P= 1
`3

(|1, −1
2P+`2 |0, 12P),

|5P= 1
`3

(|−1, 12P+`2 |0, −1
2P), |6P=|−1, −1

2P,

(3)

where the states |1P, |2P form the doublet and the remaining states form the
quadruplet. The projectors onto the doublet and quadruplet subspace are
given by

Pd=−2
3 (TF · SF−

1
2), Pq=

2
3 (TF · SF+1). (4)

It follows that the rung interaction term can be accommodated into an
su(6) invariant Heisenberg chain by embedding the doublet rung states
through an appropriate chemical potential term. The leg and rung part of
the Hamiltonian (1) can be derived from the relation

H=J||
d
dv

ln y(v)|v=0+E++h+const (5)

associated with the quantum transfer matrix y(v)=tr0 T(v). The energy
E++h arising from the rung interaction and magnetic field terms is given
further below. Here T(u) denotes the monodromy matrix given by

T(v)=R0, L(v) R0, L−1(v) · · ·R0, 2(v) R0, 1(v) (6)

associated with the su(6) quantum R-matrix.
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Now consider the effect of the magnetic field. Although the magnetic
field preserves the integrability of the leg part of the Hamiltonian, the dif-
ferent g-factors on each leg break the doublet/quadruplet basis (3) for the
Hamiltonian (1). Fortunately, we can still find another basis,

k (±)1
2

=
1

`1+(y (±)
1
2

)2
(|1, −1

2P+y (±)
1
2

|0, 12P),

k (±)−12
=

1

`1+(y (±)
−12

)2
(|−1, 12P+y(±)

−12
|0, −1

2P), (7)

k3
2
=|1, 12P, k−32=|−1, −1

2P,

to diagonalize the rung and magnetization terms simultaneously. The
quantities y (±)

a are given by

y (±)
a =a`2 [(gs −gt) hŒ+a]± `1+1

2 (gshŒ−gthŒ+a)2 , (8)

where a=± 1
2 and hŒ=mBh/J+ . We notice that if gs=gt, the basis states

k
(−)
1
2

and k (−)−12
reduce to the doublet, with the other states reducing to the

quadruplet. With regard to the total spin of the multiplets we can still
call the states (k3

2
, k (+)1

2
, k (+)−12

, k−32) quadruplets and (k (−)1
2

, k (−)−12
) doublets.

It is well established that the Hamiltonian (1) can be diagonalized via
the algebraic Bethe ansatz. In this procedure it is important to note that the
leg content of the Hamiltonian, Hleg, is not altered under the change of
basis order between the quadruplet and the doublet states, however the
rung and magnetic field terms are altered by these changes. We note also
that for the ladder Hamiltonian (1) the doublet rung state is energetically
favoured for J+ > 0, whereas the quadruplet rung state is favoured for
J+ < 0. This is the reason for choosing the doublet state as reference state
for J+ > 0, while a quadruplet state is choosen as reference state for J+ < 0.
As the magnetic field is turned on, the energy levels of each multiplet
component split. The basis order is therefore chosen in accordance with
their energy levels.

The resulting Bethe ansatz equations are well known (34) and consist of
a set of five coupled equations depending on five flavours, v (k), k=1,..., 5.
The Bethe ansatz equations

D
Mk−1

a=1

v (k)j −v (k−1)a + i
2

v (k)j −v (k−1)a − i
2

=D
Mk

l=1
l ] j

v (k)j −v (k)l +i

v (k)j −v (k)l − i
D
Mk+1

l=1

v (k)j −v (k+1)l − i
2

v (k)j −v (k+1)l + i
2

(9)
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can be derived from the nested algebraic Bethe ansatz. In the above,
k=1,..., 5 and j=1,..., Mk and the conventions v (0)j =v (6)j =0, M6=0
apply. In real ladder compounds the difference between the g-factors along
each leg is small (this is not always true for spin-orbital models (32)). Thus
from now on we treat the term gs −gt as a small quantity. After some
algebra, the eigenspectrum is obtained from relation (5) as

E=J||L−J|| C
M1

i=1

1
v2i+

1
4

+E++h, (10)

where vj=v (1)j and the energy contribution from the rung interaction and
the magnetic field terms is given by

E++h=5−
1
4
J+ −

1
2
gsmBh−

1

`2
J+
=1+1

2
1gshŒ−gthŒ+

1
2
226N (−)

1
2

+5−1
4
J++

1
2
gsmBh−

1

`2
J+
=1+1

2
(gshŒ−gthŒ−

1
2
226N (−)

−12

+51
2
J+ −11

2
gt+gs 2 mBh6N3

2

×5−1
4
J+ −

1
2
gsmBh+

1

`2
J+
=1+1

2
1gshŒ−gthŒ+

1
2
226N (+)

1
2

+5−1
4
J++

1
2
gsmBh+

1

`2
J+
=1+1

2
1 gshŒ−gthŒ−

1
2
226N (+)

−12

+51
2
J++1

1
2
gt+gs 2 mBh6N−32

=5−3
2
J+ −

1
2
gsmBh−

1
6
(gs −gt) mBh6N (−)

1
2

+5−3
2
J++

1
2
gsmBh+

1
6
(gs −gt) mBh6N (−)

−12

−11
2
gt+gs 2 mBhN3

2
−51

2
gsmBh−

1
6
(gs −gt) mBh6N (+)

1
2

+51
2
gsmBh−

1
6
(gs −gt) mBh6N (+)

−12

+11
2
gt+gs 2 mBhN−32

+const. (11)
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Here the N’s are the numbers of the corresponding states. In the thermo-
dynamic limit, the Bethe ansatz equations (9) allow the string solution (35, 36)

v (k)
n

akj=v (k)
n

a1
+1

2 i(n+1−2j), (12)

where j=1,..., n, aa=1,..., N (k)
n and v (k)nak , k=1,..., 5, are the positions of

the center of the strings of flavour k. The number of n-strings, N (a)
n , satis-

fies the relation M (k)=; n nN
(k)
n . On taking the thermodynamic limit, the

Bethe ansatz equations become

r (1) hn =an −C
m

Anm f r (1)m +C
m

anm f r (2)m , (13)

r (k) hn =−C
m

Anm f r (k)m +C
m

anm f (r (k−1)m +r (k+1)m ), (14)

where k=2,..., 5, and the symbol f denotes convolution. r (k)n (v) and
r (k) hn (v) with k=1,..., 5 are the densities of roots and holes for the five
flavours. We have adopted the standard notations

Anm(l)=d(l) dnm+(1−dnm) a|n−m|(l)+an+m(l)

+2 C
Min(n, m)−1

l=1
a|n−m|+2l(l), (15)

anm(l)= C
Min(n, m)

l=1
an+m+1−2l(l), (16)

with an(l)=
1
2p

n

n2/4+l2
.

In order to find the equilibrium state of the system at a fixed tempera-
ture T and external magnetic field h \ 0, we minimize the free energy
F=E−TS−hMz with respect to the densities and then obtain the TBA
equations in the form

E (k)1 =g (k)1 +Ta2 f ln(1+e−
E
(k)
1
T )+T(a0+a2) C

.

m=1
am f ln(1+e−

E
(k)
m+1
T )

−T C
.

m=1
am f 1 ln(1+e−

E
(k−1)
m
T )+ln(1+e−

E
(k+1)
m
T )2 , (17)

E (k)n =g (k)n +Ta1 f ln(1+e
E
(k)
n−1
T +Ta2 f ln(1+e−

E
(k)
n
T ))

+T(a0+a2) C
.

m \ n
am−n f ln(1+e−

E
(k)
m
T )

−T C
.

m \ n
am−n+1 f 1 ln(1+e−

E
(k−1)
m
T )+ln(1+e−

E
(k+1)
m
T )2 , n \ 2. (18)
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Here r (k) hn (l)/r (k)n (l) :=exp(E (k)n (l)/T) with k=1,..., 5 and E (0)n (l)=
E (6)n (l)=0 is assumed. The dressed energies E (k)n play the role of excitation
energies measured from the Fermi level for each flavour. The driving terms
in the antiferromagnetic rung coupling regime for a weak magnetic field,
h <

3J+
[gt+3gs+(gs −gt)/3] mB

, are given by

g (1)1 =−J||
1

v2+1
4

+5gs+
1
3
(gs −gt)6 mBh,

g (2)1 =
3
2
J+ −51

2
gt+

3
2
gs+

1
6
(gs −gt)6 mBh,

g (3)1 =51
2
(gt+gs)+

1
6
(gs −gt)6 mBh,

g (4)1 =5gs −
1
3
(gs −gt)6 mBh,

g (5)1 =51
2
(gt+gs)+

1
6
(gs −gt)6 mBh. (19)

The higher driving terms are given by g (1)n =n[gs+
1
3 (gs −gt)] mBh and

g (k)n =ng(k)1 for k > 1. Consequently, the free energy is given by

f(h, T)
L

=−
1
2
gsmBh−

1
6
(gs −gt) mBh

−T F
.

−.
C
.

n=1
an(l) ln(1+e−

E
(1)
n (l)
T ) dl. (20)

It is worth mentioning that the driving terms vary for different choices of
the basis order. The TBA equations (17) and (19) provide a clear physical
picture of the groundstate and make the thermodynamic properties, such as
the free energy, magnetization and susceptibility accessible.

3. QUANTUM PHASE DIAGRAM

In the low temperature limit, the states with positive dressed energy
are empty. The rapidities with negative dressed energy correspond to
occupied states. The zeros of the dressed energies define the Fermi energies.
As usual, we decompose E (a)n into positive and negative parts, E (k)n =
E (k)+n +E (k)−n , with only the negative dressed energies contributing to the
groundstate energy. Analysis of Eqs. (17) and (19) in the limit TQ 0
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reveals that the roots are all real for the groundstate, corresponding to
n=1. All dressed energies E (k)+n with n \ 2 correspond to excitations.
Under this circumstance, we see that all energy bands are completely filled
in the absence of an external magnetic field and rung interactions.

In order to derive the groundstate properties, we first consider the
antiferromagnetic regime J+ > 0, where the doublet component k (−)1

2
is

chosen as the reference state with a basis order (k (−)1
2

, k (−)−12
, k3

2
, k (+)1

2
, k (+)−12

,
k−32). The groundstate TBA equations then read

E (1)=g (1)1 −a2 f E (1)−+a1 f E (2)−,

E (k)=g (k)1 −a2 f E (k)−+a1 f [E (k−1)−+E (k+1)−], (21)

k=2,..., 5.

It is clear that without a magnetic field the su(6) multiplet levels split due
to the rung coupling. If J+ is very large (the limit of strong rung coupling),
the whole quadruplet state (k3

2
, k (+)1

2
, k (+)−12

, k−32) is gapfull, i.e., E (k) > 0 for
k > 2. This means that the quadruplet is not involved in the ground-
state—the groundstate consists of doublet states with massless excitation.
From the TBA equation (21), we find that the quadruplet excitation gap is
given by D1=

3
2 J+ −2J|| ln 2. Thus if J+ becomes larger than the critical

value J+c =
4
3 J|| ln 2, there is a quantum phase transition from the Luttinger

liquid su(4) À su(2) phase into the su(2) phase. However, in the presence of
a magnetic field this critical point is not stable. In this case the dressed
energy levels become completely split by the magnetic field h. If the rung
coupling J+ is large enough so that the driving term g (2)1 in (19) remains
positive, the quadruplet state could be gapfull and the groundstate would
still be the doublet. However, as the magnetic field increases, the doublet
component k (−)−12

gradually shifts out of the groundstate as the Fermi
surface of the dressed energy E (1) lifts. Subsequently, if the magnetic field h
is larger than the critical point Hc1, the reference state becomes a true phy-
sical state such that the strong rung coupling forms a rung trimerized
groundstate (see Fig. 2). In other words, the doublet component k (−)1

2
forms

a ferrimagnetic groundstate. The critical field Hc1 is given by

Hc1=4J||/[gs+
1
3 (gs −gt)] mB. (22)

Fig. 2. The doublet polarized state forms a rung trimerized groundstate.
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The critical point Hc1 indicates a quantum phase transition from a
gapless magnetic phase into a ferrimagnetic phase with gap D2=
( 12 gs+

1
6 (gs −gt)] mB(h−Hc1). It is worth noting that in this ferromagnetic

phase a magnetization plateau Mz=1
2 gsmB+

1
6 (gs −gt) mB opens. The nec-

essary condition for this plateau to exist is

J+ \ J+Fc =
8J||
3

[ 12 gt+
3
2 gs+

1
6 (gs −gt)]

[gs+
1
3 (gs −gt)]

. (23)

In the critical phase h < Hc1, the TBA equations with a very large or a very
small Fermi boundary can be solved analytically. If the magnetic field is
very small, i.e., h° 1, the Fermi boundary of the dressed energy E (1) is very
large. The energy potential satisfies the Wiener–Hopf type equation

E (1)(l)=−J||
p

cosh pl
+

1
2
5gs+

1
3
(gs −gt)6 mBh+F

−B,.

−., B
G(l−k) f E (1)(k) dk.

(24)

Here the function G(l) is defined via

G(l)=
1
2p

F
.

−.

e−|w|/2

2 cosh w/2
e−ilw dw.

Using the standard Wiener–Hopf technique, we find that the Fermi
boundary satisfies the relation e−Bp=[gs+

1
3 (gs −gt)] mBha−(0)/4J||pa+(ip),

where the decomposition functions are given by

a+(w)=a−(−w)=`2 p 1g−iw
2pe
2−

iw
2p;C 11

2
−
iw
2p
2 . (25)

The Fermi boundary decreases monotonically with increasing magnetic
field. Correspondingly, the free energy is given by

F(0, h)
L

% −J|| 5Y(1)−Y11
2
26− 1

8p2
5gs+

1
3
(gs −gt)6

2

m2Bh
2, (26)

which suggests a susceptibility of q % 1
4p2

[gs+
1
3 (gs −gt)]2 m

2
B, indicating an

su(2) critical phase. In the above C(z) and Y(a) are the gamma and
diagamma functions, respectively.

On the other hand, if the magnetic field h tends to the critical point
Hc1, the Fermi boundary Q of the dressed energy E (1) is very small, say
Q° 1 for Hc1 −h° 1. Under this circumstance, the free energy is given by

F(0, h)
L

% −
1
2
5gs+

1
3
(gs −gt)6 mBh−

4Q
p
5gs+

1
3
(gs −gt)6 mB(Hc1 −h), (27)
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where Q %`(Hc1 −h)/4Hc1. Thus the susceptibility

q %
(4gs −gt) mB
p`4Hc1

(Hc1 −h)−
1
2 (28)

indicates the singular behavior of the transition from the gapless phase into
the gapped phase. In addition, from the Bethe ansatz equations and the
relation

Mz % 1
2 gsmB+

1
6 (gs −gt) mB −[gs+

1
3 (gs −gt)] mB F

Q

−Q
r (1)1 (l) dl, (29)

the magnetization per site Mz in the vicinity of Hc1 follows as

Mz=
1
2
gsmB+

1
6
(gs −gt) mB −

4Q
p
5gs+

1
3
(gs −gt)6 mB 11−

2Q
p
2 . (30)

Apparently, as h QHc1 the magnetization Mz tends to the plateau value
1
2 gsmB+

1
6 (gs −gt) mB. We shall discuss the magnetization plateaux as well

as the quantum phase transitions in the next section.
For the ferromagnetic regime J+ < 0, the rung quadruplet component

k3
2
is chosen as the reference state with (k3

2
, k (+)1

2
, k (+)−12

, k−32, k
(−)
1
2

, k (−)−12
) as

the order of the basis. Thus the driving terms are given by

g (1)1 =−J||
1

v2+1
4

+51
2
(gt+gs)+

1
6
(gs −gt)6 mBh,

g (2)1 =5gs −
1
3
(gs −gt)6 mBh,

g (3)1 =51
2
(gt+gs)+

1
6
(gs −gt)6 mBh, (31)

g (4)1 =−
3
2
J+ −51

2
gt+

3
2
gs+

1
6
(gs −gt)6 mBh,

g (5)1 =5gs+
1
3
(gs −gt)6 mBh.

In the absence of a magnetic field, the quadruplet and doublet states
are degenerate. If the rung coupling becomes negative enough the doublet
state is completely gapfull, and the Fermi boundaries of the quadruplet
states are infinite. Using Fourier transforms, we find that the doublet does
not exist in the groundstate for J+ < J−

c =−2
3 J||. Again this critical point is
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Fig. 3. The quadruplet fully-polarized state forms a trimerized ferromagnetic groundstate.

not stable if the magnetic field is applied. We can see that the Fermi surfa-
ces of the dressed energies E (k), k=1, 2, 3 lift, while the Fermi surfaces of
the doublet sink. If the magnetic field is strong enough, i.e., if

h \ h−c =4J||/[
1
2 (gt+gs)+

1
6 (gs −gt)] mB, (32)

the reference state k3
2
becomes a true physical state. Thus the groundstate is

a fully-polarized (trimer-like) ferromagnetic state (see Fig. 3). Note that the
rung coupling J+ must be less than a critical value J−F

+ given by

J−F
+ =−

8J||
3

[ 12 gt+
3
2 gs+

1
6 (gs −gt)]

[ 12 (gt+gs)+
1
6 (gs −gt)]

. (33)

4. MAGNETIZATION PLATEAUX

Magnetization plateaux are one of the most interesting phenomena in
the ladder compounds. For example, fractional magnetization plateaux
have been found in Shastry–Sutherland systems. (37) Theoretical studies and
numerical results suggest that magnetization plateaux exist in the mixed
spin-( 12 , 1) chains (24–26) and the mixed ladder. (28) From the analysis of the
critical points of the solvable model in the last section, we found that
gapped or gapless states appear in turn as the external magnetic field
increases. For very strong rung coupling, i.e., J+ ± J+Fc , the two-compo-
nent massless quantum magnetic phase lies in the regime h < Hc1. The
ferrimagnetic phase appears for a magnetic field h > Hc1 and the compo-
nent k (−)1

2
becomes a physical ferrimagnetic groundstate. On the other

hand, the magnetic field can bring the state k3
2
close to the groundstate.

Eventually it becomes involved in the groundstate when the magnetic
field is strong enough. From the expression (11), we see that if
h > 3J+/(gt+3gs+

1
3 (gs −gt)) mB, the state k3

2
becomes an energetically

lower lying state than k (−)−12
. In this case it is convenient to reorder the basis

as (k (−)1
2

, k3
2
, k (−)−12

, k (+)1
2

, k (+)−12
, k−32). Here the TBA driving terms are given by
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g (1)1 =−J||
1

v2+1
4

+
3
2
J+ −51

2
(gt+gs)−

1
6
(gs −gt)6 mBh,

g (2)1 =−
3
2
J++5

1
2
gt+

3
2
gs+

1
6
(gs −gt)6 mBh,

g (3)1 =
3
2
J+ −gsmBh, (34)

g (4)1 =5gs −
1
3
(gs −gt)6 mBh,

g (5)1 =51
2
(gt+gs)+

1
6
(gs −gt)6 mBh.

Analysing the TBA with these driving terms, we find that the ferri-
magnetic groundstate can be maintained only in the regime Hc1 [ h < Hc2,
where the critical point Hc2 is given by

Hc2=
3J+ −8J||

[(gt+gs)−
1
3 (gs −gt)] mB

. (35)

Beyond the critical field Hc2, the plateau Mz=1
2 gsmB+

1
6 (gs −gt) mB

vanishes. In the vicinity of Hc2, i.e., h−Hc2 ° 1, the Fermi boundary is
very small. After a similar calculation the Fermi point is found to be

Q %=[
1
2 (gt+gs)−

1
6 (gs −gt)] mB(h−Hc2)

16J||
. (36)

The susceptibility is given by

q %
3[ 12 (gs+gt) mB −

1
6 (gs −gt) mB]

3
2

4p`J||(h−Hc2)
, (37)

which indicates the singular behavior of the transition of the gapped phase
into the gapless phase. The magnetization shows the square root field
dependent behaviour

Mz=51
2
gs+

1
6
(gs −gt)6 mB+

4Q
p
51
2
(gt+gs)−

1
6
(gs −gt)6 mB 11−

2Q
p
2 .
(38)
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If the magnetic field is further increased to h > 3J+/[(gt+gs)−
1
3 (gs −gt)] mB, the state k3

2
becomes the lowest lying state. Thus in this

regime, it is reasonable to choose the basis order as (k3
2
, k (−)1

2
, k (+)1

2
, k (−)−12

,
k
(+)
−12

, k−32). Subsequently, the driving terms are given by

g (1)1 =−J||
1

v2+1
4

−
3
2
J++5

1
2
(gt+gs)−

1
6
(gs −gt)6 mBh,

g (2)1 =53
2
J++

1
3
(gs −gt)6 mBh,

g (3)1 =−
3
2
J++gsmBh,

g (4)1 =
3
2
J+ −

1
3
(gs −gt) mBh,

g (5)1 =51
2
(gt+gs)+

1
6
(gs −gt)6 mBh.

(39)

As the magnetic field increases beyond the critical point Hc2, the ground-
state becomes a mixture of the doublet and quadruplet states. Strictly
speaking, the doublet component k (−)1

2
and the quadruplet component k3

2

compete for the groundstate. Other components of the multiplets are
gapfull by virtue of both the rung coupling and magnetic field. As the
magnetic field becomes stronger, the probability of the quadruplet com-
ponent k3

2
becomes higher. The inflection point at hIP=3J+/[(gt+gs)−

1
3 (gs −gt)] mB indicates an equal probability between the components k3

2

and k (−)1
2
, which can be seen clearly from the magnetization curve in

Fig. 4. Using the TBA equations with the driving term (39), we find that
for a sufficiently large magnetic field h \Hc3 the groundstate becomes
fully-polarized with a full saturation magnetization plateau at Mz=
( 12 gt+gs) mB. The critical point is given by

Hc3=
3J++8J||

[(gt+gs)−
1
3 (gs −gt)] mB

. (40)

Analogously, we find the singular behavior in the vicinity of the the critical
point Hc3. The susceptibility is given by

q %
3[ 12 (gs+gt) mB −

1
6 (gs −gt) mB]

3
2

4p`J||(Hc3 −h)
, (41)
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Fig. 4. The magnetization versus magnetic field h in the strong antiferromagnetic rung
coupling regime. The magnetic moment is normalized from the magnetization via
Mz/12 (gs+gt) mB. The coupling constants used are J+=6.0K, J||=0.4K and we take g-factor
values gs=2.22, gt=2.09 with mB=0.672K/T. From the TBA we predict that the one third
saturation magnetization plateau opens only if J+ \ J+Fc as given in (23). The indicated critical
fields Hc1 % 1.052 T, Hc2 % 5.162 T, and Hc3 % 7.394 T predicted by the TBA coincide with the
numerically estimated values. The inflection point at h=hIP % 6.278 T and M % 1 indicates a
point of equal probability for the states k3

2
and k (−)1

2
.

which indicates the nature of the singular behavior of the transition
between the gapless and gapped phases. The magnetization also exhibits
the square root field dependent behaviour

Mz=51
2
gt+gs6 mB −

4Q
p
51
2
(gt+gs)−

1
6
(gs −gt)6 mB 11−

2Q
p
2 , (42)

where the Fermi point Q is

Q %= [ 12 (gt+gs)−
1
6 (gs −gt)] mB(Hc3 −h)

16J||
. (43)

The magnetization increases almost linearly between the critical fields Hc2

and Hc3.
We have obtained the whole magnetization curve by numerically

solving the TBA equations in the different phases (see Fig. 4). A third and
full saturation magnetization plateaux is observed. On the other hand,
as mentioned above, the first magnetization plateau at Mz=1

2 gsmB+
1
6 (gs −gt) mB depends mainly on the rung coupling. If J+ < J+Fc this plateau
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disappears. J+Fc is a necessary condition for the existence of the one third
saturation magnetization plateau. This conclusion is reasonable because the
leg part of the Hamiltonian (1) is stronger than the rung part, due to the
multispin interaction terms in Eq. (2). Therefore, the rung coupling must be
large enough in order to dominate the low temperature groundstate. If the
rung coupling fulfills J+c < J+ < J+Fc the field-induced fractional plateau
vanishes. In Fig. 5 we show the full numerical magnetization curve for
weak rung coupling J+=1.3 K. We clearly see that the fractional magne-
tization plateau is closed. From the TBA analysis the first critical point Hc1

lies in the interval

3(J+ −J+c )
[gt+3gs+(gs −gt)/3] mB

< Hc1 <
3J+

[gt+3gs+(gs −gt)/3] mB
,

which for the given parameter set (see figure captions) evaluates to
0.47 < Hc1 < 0.66T. Indeed, from the numerical results we findHc1 % 0.605T.
This implies that for H < 0.605 T the groundstate is the doublet spin liquid
phase. A magnetic field beyond this point allows the quadruplet compo-
nent k3

2
to be involved in the groundstate. Therefore the critical point Hc1

indicates a quantum phase transition from a two-state phase into a three-
state phase. Hence for h > 0.605 T, two Fermi seas, E (1) and E (2), lie in the
groundstate. We can see that the probability of the component k3

2
to be in
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Fig. 5. The magnetization versus magnetic field h in the weak antiferromagnetic rung cou-
pling regime. The numerical values are the same as for the previous figure, but now using the
smaller rung coupling constant J+=1.3 K < J+Fc % 2.07 K. In this case the fractional magne-
tization plateau vanishes. The TBA critical fields coincide again with the numerically esti-
mated values. The inset shows an enlargement of the magnetization between Hc1 and Hc2.
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the groundstate increases as the magnetic field increases. Meanwhile the
doublet state k−−12 is quickly driven out of the groundstate at the critical
point Hc2, where the phase transition from the three-state into the two-state
phase occurs. From Eq. (11), we find the middle point between Hc1 and Hc2

is approximately at 0.66 T, which is consistent with the numerical curve in
Fig. 5. Thus from the theory we predict the critical field to be
Hc2=6J+/[(gt+gs)−

1
3 (gs −gt)] mB −Hc1 % 0.715 T. This again is in

agreement with the numerical value of 0.713 T. In the region Hc2 < h < Hc3

the two components k−1
2
and k3

2
compete to be in the groundstate. If the

magnetic field is strong enough, so that H > Hc3 where Hc3 is given by (40),
the reference state k3

2
becomes a true physical groundstate.

5. CONCLUSION

We have investigated the phase diagram of the exactly solved mixed
spin-( 12 , 1) ladder model in both the absence and presence of an external
magnetic field using the TBA. It has been shown that in the strong anti-
ferromagnetic rung coupling regime there exists a third and full saturation
magnetization plateau. A Luttinger liquid magnetic phase exists in the
regime h < Hc1, which corresponds to the doublet su(2) phase. The magne-
tic groundstate consisting of two components k−1

2
and k3

2
lies in the regime

Hc2 < h < Hc3. The ferromagnetic ground state with a third saturation
magnetization plateau appears in the regime Hc1 < h < Hc2. The full satu-
ration magnetization plateau opens at h > Hc3. The gapped or gapless
states appear in turn as the magnetic field is increased. The weak rung
coupling regime exhibits three different phase transitions, which involve
two- and three-state quantum phase transitions. The fractional magnetiza-
tion plateau vanishes. The model does not exihibit a third saturation mag-
netization plateau in the strong ferromagnetic rung coupling regime. We
have also investigated the singular behaviour in the vicinity of the critical
points via the solutions of the TBA equations. As the contributions from
the leg interaction to the groundstate energy are very small in the strong
rung coupling regime we believe that the solvable model (1) is well suited to
describe the physics of real mixed spin-( 12 , 1) ladder compounds with a rel-
atively large rung coupling constant. However, such mixed spin ladder
compounds are yet to be found.

One compound that we are aware of is the organic ferrimagnet
PNNBNO, (31) which has been recognized as a ladder compound with
alternating spin- 12 and spin-1 units, i.e., as two coupled alternating mixed
spin chains. The strong interchain (rung) coupling suggests that PNNBNO
can be effectively identified as a mixed spin-( 12 , 1) ladder model via the
Hamiltonian (1) in the high temperature limit (T \ 50 K). In this case the
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dominant rung interaction forms an effective one-dimensional spin- 32 anti-
ferromagnetic chain. Of course for low temperatures the ferrimagnetic cor-
relations between the spin-1 and spin- 12 units should appear. Nevertheless
we believe that the mixed spin-( 12 , 1) ladder model discussed here can at
least describe the high temperature properties of PNNBNO. (31)
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